Dynamic of cyclic automata over Z(2)
Abstract
Let K be the two-dimensional grid. Let q be an integer greater than 1 and let Q={0,...,q-1}. Let s:Q?Q be defined by s(?)=(?+1)modq, ??Q. In this work we study the following dynamic F on Q Z2. For xQZ2 we define Fv(x)=s(xv) if the state s(xv) appears in one of the four neighbors of v in K and Fv(x)=xv otherwise. For xQZ2, such that {vZ2:xv?0} is finite we prove that there exists a finite family of cycles such that the period of every vertex of K divides the lcm of their lengths. This is a generalization of the same result known for finite graphs. Moreover, we show that this upper bound is sharp. We prove that for every n?1 and every collection k1,...,kn of non-negative integers there exists ynQZ2 such that |{vZ2:ynv?0}|=O(k12+...+kn2) and the period of the vertex (0,0) is p·lcm{k1,...,kn}, for some even integer p. © 2004 Elsevier B.V. All rights reserved.
Más información
| Título según WOS: | Dynamic of cyclic automata over Z(2) | 
| Título según SCOPUS: | Dynamic of cyclic automata over ?2 | 
| Título de la Revista: | THEORETICAL COMPUTER SCIENCE | 
| Volumen: | 322 | 
| Número: | 2 | 
| Editorial: | Elsevier | 
| Fecha de publicación: | 2004 | 
| Página de inicio: | 369 | 
| Página final: | 381 | 
| Idioma: | English | 
| DOI: | 
 10.1016/j.tcs.2004.03.018  | 
| Notas: | ISI, SCOPUS |