Discontinuity-induced bifurcations of equilibria in piecewise-smooth and impacting dynamical systems

di Bernardo, M.; Nordmark, A.

Abstract

A rich variety of dynamical scenarios has been shown to occur when a fixed point of a non-smooth map undergoes a border-collision. This paper concerns a closely related class of discontinuity-induced bifurcations, those involving equilibria of n-dimensional piecewise-smooth flows. Specifically, transitions are studied which occur when a boundary equilibrium, that is one lying within a discontinuity manifold, is perturbed. It is shown that such equilibria can either persist under parameter variations or can disappear giving rise to different bifurcation scenarios. Conditions to classify among the possible simplest scenarios are given for piecewise-smooth continuous, Filippov and impacting systems. Also, we investigate the possible birth of other attractors (e.g. limit cycles) at a boundary-equilibrium bifurcation. (c) 2007 Elsevier B.V. All rights reserved.

Más información

Título según WOS: ID WOS:000253270600010 Not found in local WOS DB
Título de la Revista: PHYSICA D-NONLINEAR PHENOMENA
Volumen: 237
Número: 1
Editorial: Elsevier
Fecha de publicación: 2008
Página de inicio: 119
Página final: 136
DOI:

10.1016/j.physd.2007.08.008

Notas: ISI