Discontinuity-induced bifurcations of equilibria in piecewise-smooth and impacting dynamical systems
Abstract
A rich variety of dynamical scenarios has been shown to occur when a fixed point of a non-smooth map undergoes a border-collision. This paper concerns a closely related class of discontinuity-induced bifurcations, those involving equilibria of n-dimensional piecewise-smooth flows. Specifically, transitions are studied which occur when a boundary equilibrium, that is one lying within a discontinuity manifold, is perturbed. It is shown that such equilibria can either persist under parameter variations or can disappear giving rise to different bifurcation scenarios. Conditions to classify among the possible simplest scenarios are given for piecewise-smooth continuous, Filippov and impacting systems. Also, we investigate the possible birth of other attractors (e.g. limit cycles) at a boundary-equilibrium bifurcation. (c) 2007 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | ID WOS:000253270600010 Not found in local WOS DB |
Título de la Revista: | PHYSICA D-NONLINEAR PHENOMENA |
Volumen: | 237 |
Número: | 1 |
Editorial: | Elsevier |
Fecha de publicación: | 2008 |
Página de inicio: | 119 |
Página final: | 136 |
DOI: |
10.1016/j.physd.2007.08.008 |
Notas: | ISI |