Neural computational prediction of oral drug absorption based on CODES 2D descriptors

Guerra, A.; Campillo, N. E.; Paez, J. A.

Abstract

A neural model based on a numerical molecular representation using CODES (R) program to predict oral absorption of any structure is described. This model predicts both high and low-absorbed compounds with a global accuracy level of 74%. CODES/ANN methodology shows promising utilities not only as a conventional in silica, tool in high-throughput screening or improvement of absorption capabilities procedures but also the improvement of in vitro-in vivo correlation could be addressed. (C) 2009 Elsevier Masson SAS. All rights reserved.

Más información

Título según WOS: ID WOS:000275404900011 Not found in local WOS DB
Título de la Revista: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
Volumen: 45
Número: 3
Editorial: ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Fecha de publicación: 2010
Página de inicio: 930
Página final: 940
DOI:

10.1016/j.ejmech.2009.11.034

Notas: ISI