Neural computational prediction of oral drug absorption based on CODES 2D descriptors
Abstract
A neural model based on a numerical molecular representation using CODES (R) program to predict oral absorption of any structure is described. This model predicts both high and low-absorbed compounds with a global accuracy level of 74%. CODES/ANN methodology shows promising utilities not only as a conventional in silica, tool in high-throughput screening or improvement of absorption capabilities procedures but also the improvement of in vitro-in vivo correlation could be addressed. (C) 2009 Elsevier Masson SAS. All rights reserved.
Más información
| Título según WOS: | ID WOS:000275404900011 Not found in local WOS DB |
| Título de la Revista: | EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY |
| Volumen: | 45 |
| Número: | 3 |
| Editorial: | ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER |
| Fecha de publicación: | 2010 |
| Página de inicio: | 930 |
| Página final: | 940 |
| DOI: |
10.1016/j.ejmech.2009.11.034 |
| Notas: | ISI |