Analysis of beta-N-methylamino-L-alanine (L-BMAA) neurotoxicity in rat cerebellum

Munoz-Saez, Emma; de Munck Garcia, Estefania; Arahuetes Portero, Rosa Ma; Martinez, Ana; Solas Alados, Ma Teresa; Gomez Miguel, Begona

Abstract

Due to its structural similarity to glutamate, L-BMAA could be a trigger for neurodegenerative disorders caused by changes. in the intracellular medium, such as increased oxidative stress, mitochondrial dysfunction, impaired synthesis and protein degradation and the imbalance of some enzymes. It is also important to note that according to some published studies, L-BMAA will be incorporated into proteins, causing the alteration of protein homeostasis. Neuronal cells are particularly prone to suffer damage in protein folding and protein accumulation because they have not performed cellular division. In this work, we will analyse the cerebellum impairment triggered by L-BMAA in treated rats. The cerebellum is one of the most important subcortical motor centres and ensures that movements are performed with spatial and temporal precision. Cerebellum damage caused by L-BMAA can contribute to motor impairment. To characterize this neurodegenerative pathology, we first carried out ultrastructure analysis in Purkinje cells showing altered mitochondria, endoplasmic reticulum (ER), and Golgi apparatus (GA). We then performed biochemical assays of GSK3 and TDP-43 in cerebellum, obtaining an increase of both biomarkers with L-BMAA treatment and, finally, performed autophagy studies that revealed a higher level of these processes after treatment. This work provides evidence of cerebellar damage in rats after treatment with L-BMAA. Three months after treatment, affected rats cannot restore the normal functions of the cerebellum regarding motor coordination and postural control. (C) 2015 Elsevier Inc. All rights reserved.

Más información

Título según WOS: ID WOS:000355641600021 Not found in local WOS DB
Título de la Revista: NEUROTOXICOLOGY
Volumen: 48
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2015
Página de inicio: 192
Página final: 205
DOI:

10.1016/j.neuro.2015.04.001

Notas: ISI