Nonlinear diffusions, hypercontractivity and the optimal L-P-Euclidean logarithmic Sobolev inequality

Del Pino M.; Dolbeault J.; Gentil, I

Abstract

The equation ut = ?p (u1/(p-1)) for p >1 is a nonlinear generalization of the heat equation which is also homogeneous, of degree 1. For large time asymptotics, its links with the optimal Lp-Euclidean logarithmic Sobolev inequality have recently been investigated. Here we focus on the existence and the uniqueness of the solutions to the Cauchy problem and on the regularization properties (hypercontractivity and ultracontractivity) of the equation using the Lp-Euclidean logarithmic Sobolev inequality. A large deviation result based on a Hamilton-Jacobi equation and also related to the Lp-Euclidean logarithmic Sobolev inequality is then stated. © 2003 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Nonlinear diffusions, hypercontractivity and the optimal L-P-Euclidean logarithmic Sobolev inequality
Título según SCOPUS: Nonlinear diffusions, hypercontractivity and the optimal LP-Euclidean logarithmic Sobolev inequality
Título de la Revista: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Volumen: 293
Número: 2
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2004
Página de inicio: 375
Página final: 388
Idioma: English
DOI:

10.1016/j.jmaa.2003.10.009

Notas: ISI, SCOPUS