A decreasing sequence of upper bounds on the largest Laplacian eigenvalue of a graph
Abstract
Let G be a simple graph. In this paper, we obtain a sequence (b p)p=1? of upper bounds on the largest eigenvalue ?1(G) of the Laplacian matrix of G. Then, we show that this sequence converges to ?1(G) and that (b 2p)p=0? is a monotone strictly decreasing sequence except if G is a complete graph or G is a star graph or G is a regular complete bipartite graph. For these graphs, b p = ?1(G) for all p. The bounds b1 and b2 are discussed. © 2003 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | A decreasing sequence of upper bounds on the largest Laplacian eigenvalue of a graph |
| Título según SCOPUS: | A decreasing sequence of upper bounds on the largest Laplacian eigenvalue of a graph |
| Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
| Volumen: | 381 |
| Número: | 01-mar |
| Editorial: | Elsevier Science Inc. |
| Fecha de publicación: | 2004 |
| Página de inicio: | 97 |
| Página final: | 116 |
| Idioma: | English |
| DOI: |
10.1016/j.laa.2003.10.026 |
| Notas: | ISI, SCOPUS |