Stable functions and Vietoris' theorem
Abstract
An analytic function f(z) in the unit disc D is called stable if sn(f,·)/f ? 1/f holds for all for n ? ?0. Here sn stands for the nth partial sum of the Taylor expansion about the origin of f, and ? denotes the subordination of analytic functions in D. We prove that (1 - z ?, ? ? [-1, 1], are stable. The stability of (1 + z)/(1 - z) turns out to be equivalent to a famous result of Vietoris on non-negative trigonometric sums. We discuss some generalizations of these results, and related conjectures, always with an eye on applications to positivity results for trigonometric and other polynomials. © 2003 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Stable functions and Vietoris' theorem |
| Título según SCOPUS: | Stable functions and Vietoris' theorem |
| Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
| Volumen: | 291 |
| Número: | 2 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2004 |
| Página de inicio: | 596 |
| Página final: | 604 |
| Idioma: | English |
| DOI: |
10.1016/j.jmaa.2003.11.035 |
| Notas: | ISI, SCOPUS |