Finite element approximation of spectral acoustic problems on curved domains
Abstract
This paper deals with the finite element approximation of the displacement formulation of the spectral acoustic problem on a curved non convex two-dimensional domain ?. Convergence and error estimates are proved for Raviart-Thomas elements on a discrete polygonal domain ?h, ? ? in the framework of the abstract spectral approximation theory. Similar results have been previously proved only for polygonal domains. Numerical tests confirming the theoretical results are reported.
Más información
| Título según WOS: | Finite element approximation of spectral acoustic problems on curved domains |
| Título según SCOPUS: | Finite element approximation of spectral acoustic problems on curved domains |
| Título de la Revista: | NUMERISCHE MATHEMATIK |
| Volumen: | 97 |
| Número: | 1 |
| Editorial: | SPRINGER HEIDELBERG |
| Fecha de publicación: | 2004 |
| Página de inicio: | 131 |
| Página final: | 158 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s00211-003-0501-x |
| DOI: |
10.1007/s00211-003-0501-x |
| Notas: | ISI, SCOPUS |