Steepest descent with curvature dynamical system

Alvarez, F.; Cabot A.

Abstract

Let H be a real Hilbert space and let ?·,·? denote the corresponding scalar product. Given a script C sign2 function ?: H?? that is bounded from below, we consider the following dynamical system: (SDC) ?(t) + ?(x(t))??(x(t)) = 0, t?0, where ?(x) corresponds to a quadratic approximation to a linear search technique in the direction ??(x). The term ?(x) is connected intimately with the normal curvature radius ?(x) in the direction ??(x). The remarkable property of (SDC) lies in the fact that the gradient norm |??(x(t))| decreases exponentially to zero when t?+?. When ? is a convex function which is nonsmooth or lacks strong convexity, we consider a parametric family {??, ? > 0} of smooth strongly convex approximations of ? and we couple this approximation scheme with the (SDC) system. More precisely, we are interested in the following dynamical system: (ASDC) ?(t) + ?(t,x(t))?x?(t,x(t)) = 0, t?0, where ?(t,x) is a time-dependent function involving a curvature term. We find conditions on the approximating family and on ?(·) ensuring the asymptotic convergence of the solution trajectories ?(·) toward a particular solution of the problem min {?(x),x?H}. Applications to barrier and penalty methods in linear programming and to viscosity methods are given.

Más información

Título según WOS: Steepest descent with curvature dynamical system
Título según SCOPUS: Steepest descent with curvature dynamical system
Título de la Revista: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
Volumen: 120
Número: 2
Editorial: SPRINGER/PLENUM PUBLISHERS
Fecha de publicación: 2004
Página de inicio: 247
Página final: 273
Idioma: English
DOI:

10.1023/B:JOTA.0000015684.50827.49

Notas: ISI, SCOPUS