The circadian timing system: Making sense of day/night gene expression

Richter, HG; Torres-Farfan, C; Rojas-Garcia, PP; Campino C.; Torrealba, F.; Seron-Ferre, M

Abstract

"The circadian time-keeping system ensures predictive adaptation of individuals to the reproducible 24-h day/night alternations of our planet by generating the 24-h (circadian) rhythms found in hormone release and cardiovascular, biophysical and behavioral functions, and others. In mammals, the master clock resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. The molecular events determining the functional oscillation of the SCN neurons with a period of 24-h involve recurrent expression of several clock proteins that interact in complex transcription/translation feedback loops. In mammals, a glutamatergic monosynaptic pathway originating from the retina regulates the clock gene expression pattern in the SCN neurons, synchronizing them to the light:dark cycle. The emerging concept is that neural/humoral output signals from the SCN impinge upon peripheral clocks located in other areas of the brain, heart, lung, gastrointestinal tract, liver, kidney, fibroblasts, and most of the cell phenotypes, resulting in overt circadian rhythms in integrated physiological functions. Here we review the impact of day/night alternation on integrated physiology; the molecular mechanisms and input/output signaling pathways involved in SCN circadian function; the current concept of peripheral clocks; and the potential role of melatonin as a circadian neuroendocrine transducer"

Más información

Título según WOS: The circadian timing system: Making sense of day/night gene expression
Título según SCIELO: The Circadian Timing System: Making Sense of day/night gene expression
Título de la Revista: BIOLOGICAL RESEARCH
Volumen: 37
Número: 1
Editorial: Springer Nature
Fecha de publicación: 2004
Página de inicio: 11
Página final: 28
Idioma: en
DOI:

10.4067/S0716-97602004000100003

Notas: ISI, SCIELO