A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis
Abstract
This is the second part of a work dealing with a low-order mixed finite element method for a class of nonlinear Stokes models arising in quasi-Newtonian fluids. In the first part we showed that the resulting variational formulation is given by a twofold saddle point operator equation, and that the corresponding Galerkin scheme becomes well posed with piecewise constant functions and Raviart-Thomas spaces of lowest order as the associated finite element subspaces. In this paper we develop a Bank-Weiser type a posteriori error analysis yielding a reliable estimate and propose the corresponding adaptive algorithm to compute the mixed finite element solutions. Several numerical results illustrating the efficiency of the method are also provided. © 2003 Elsevier B.V. All rights reserved.
Más información
| Título según WOS: | A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis |
| Título según SCOPUS: | A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: A posteriori error analysis |
| Título de la Revista: | COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING |
| Volumen: | 193 |
| Número: | 09-nov |
| Editorial: | ELSEVIER SCIENCE SA |
| Fecha de publicación: | 2004 |
| Página de inicio: | 893 |
| Página final: | 911 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0045782503005930 |
| DOI: |
10.1016/j.cma.2003.11.008 |
| Notas: | ISI, SCOPUS |