Localized structures in nonequilibrium systems
Abstract
We study numerically a prototype equation which arises genetically as an envelope equation for a weakly inverted bifurcation associated to traveling waves: The complex quintic Ginzburg-Landau equation. We show six different stable localized structures including stationary pulses, moving pulses, stationary holes and moving holes, starting from localized initial conditions with periodic and Neumann boundary conditions. © World Scientific Publishing Company.
Más información
| Título según WOS: | Localized structures in nonequilibrium systems |
| Título según SCOPUS: | Localized structures in nonequilibrium systems |
| Título de la Revista: | INTERNATIONAL JOURNAL OF MODERN PHYSICS C |
| Volumen: | 16 |
| Número: | 12 |
| Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
| Fecha de publicación: | 2005 |
| Página de inicio: | 1909 |
| Página final: | 1916 |
| Idioma: | English |
| URL: | http://www.worldscientific.com/doi/abs/10.1142/S0129183105008424 |
| DOI: |
10.1142/S0129183105008424 |
| Notas: | ISI, SCOPUS |