Ontology-Based Multidimensional Contexts with Applications to Quality Data Specification and Extraction
Abstract
Data quality assessment and data cleaning are context dependent activities. Starting from this observation, in previous work a context model for the assessment of the quality of a database was proposed. A context takes the form of a possibly virtual database or a data integration system into which the database under assessment is mapped, for additional analysis, processing, and quality data extraction. In this work, we extend contexts with dimensions, and by doing so, multidimensional data quality assessment becomes possible. At the core of multidimensional contexts we find ontologies written as Datalog(+/-) programs with provably good properties in terms of query answering. We use this language to represent dimension hierarchies, dimensional constraints, dimensional rules, and specifying quality data. Query answering relies on and triggers dimensional navigation, and becomes an important tool for the extraction of quality data.
Más información
Título según WOS: | ID WOS:000363484500019 Not found in local WOS DB |
Título de la Revista: | BIO-INSPIRED SYSTEMS AND APPLICATIONS: FROM ROBOTICS TO AMBIENT INTELLIGENCE, PT II |
Volumen: | 9202 |
Editorial: | SPRINGER INTERNATIONAL PUBLISHING AG |
Fecha de publicación: | 2015 |
Página de inicio: | 277 |
Página final: | 293 |
DOI: |
10.1007/978-3-319-21542-6_18 |
Notas: | ISI |