DIFFUSION IN MOMENTUM SPACE FOR SYSTEMS IN A RANDOM TIME-DEPENDENT ELECTRIC-FIELD - THE 1D HYDROGEN-ATOM

FLORES, JC

Abstract

It is argued that diffusion in momentum space exists for ID quantum systems (H0 = p2 + V(x)) in a random external electric wavefield (Fb(t)x). In the high-field regime, a diffusion type equation is found explicitly for the probability density. In this regime, diffusion is a consequence of randomization in the quantum system. Particularly, this result is also valid for the ID hydrogen atom in a random wavefield. So the interference phenomenon, which is a typical property in quantum systems, is disturbed by randomization. This could have important inferences in the phenomenon known as quantum suppression of classical chaos where interference gives dynamical localization.

Más información

Título según WOS: ID WOS:A1992JA38800004 Not found in local WOS DB
Título de la Revista: JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
Volumen: 25
Número: 12
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 1992
Página de inicio: L727
Página final: L732
DOI:

10.1088/0305-4470/25/12/004

Notas: ISI