ANYONS IN 1+1-DIMENSIONS

GAMBOA, J; ZANELLI, J

Abstract

The possibility of excitations with fractional spin and statistics in 1 + 1 dimensions is explored. The configuration space of a two-particle system is the half-line. This makes the Hamiltonian self-adjoint for a family of boundary conditions parametrized by one real number gamma. The limit gamma --> 0 (infinity) reproduces the propagator of non-relativistic particles whose wavefunctions are even (odd) under particle exchange. A relativistic ansatz is also proposed which reproduces the correct Polyakov spin factor for the spinning particle in 1 + 1 dimensions. These checks support the validity of the interpretation of gamma as a parameter related to the ''spin'' that interpolates continuously between bosons (gamma = 0) and fermions (gamma = infinity). Our approach can thus be useful for obtaining the propagator for one-dimensional anyons.

Más información

Título según WOS: ID WOS:A1995RT33400021 Not found in local WOS DB
Título de la Revista: PHYSICS LETTERS B
Volumen: 357
Número: 1-2
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 1995
Página de inicio: 131
Página final: 137
DOI:

10.1016/0370-2693(95)00863-G

Notas: ISI