Homogenization of a parabolic equation in perforated domain with Neumann boundary condition

Nandakumaran, AK

Abstract

In this article, we study the homogenization of the family of parabolic equations over periodically perforated domains partial derivative(t)b (x/epsilon, u(epsilon)) - diva (x/epsilon, u(epsilon), delu(epsilon)) = f(x, t) in Omega(epsilon) x (0, T), a (x/epsilon, u(epsilon), delu(epsilon)) . nu(epsilon) = 0 on partial derivativeS(epsilon) x (0, T), u(epsilon) = 0 on partial derivativeOmega x (0, T), u(epsilon) (x, 0) = u(0)(x) in Omega(epsilon). Here, Omega(epsilon) = Omega\S-epsilon is a periodically perforated domain. We obtain the homogenized equation and corrector results. The homogenization of the equations on a fixed domain was studied by the authors [15]. The homogenization for a fixed domain and b (x/epsilon, u(epsilon)) = b(u(epsilon)) has been done by Jian [11].

Más información

Título según WOS: ID WOS:000174526300015 Not found in local WOS DB
Título de la Revista: PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES
Volumen: 112
Número: 1
Editorial: INDIAN ACADEMY SCIENCES
Fecha de publicación: 2002
Página de inicio: 195
Página final: 207
DOI:

10.1007/BF02829651

Notas: ISI