Multi-class second-order cone programming support vector machines

Lopez, Julio; Maldonado, Sebastian

Abstract

This paper presents novel second-order cone programming (SOCP) formulations that determine a linear multi-class predictor using support vector machines (SVMs). We first extend the ideas of OvO (One-versus-One) and OvA (One-versus-All) SVM formulations to SOCP-SVM, providing two interesting alternatives to the standard SVM formulations. Additionally, we propose a novel approach (MC-SOCP) that simultaneously constructs all required hyperplanes for multi-class classification, based on the multi-class SVM formulation (MC-SVM). The use of conic constraints for each pair of training patterns in a single optimization problem provides an adequate framework for a balanced and effective prediction.

Más información

Título de la Revista: INFORMATION SCIENCES
Volumen: 330
Editorial: Elsevier Science Inc.
Fecha de publicación: 2016
Página de inicio: 328
Página final: 341
Idioma: Ingles
URL: https://www.sciencedirect.com/science/article/pii/S0020025515007422
DOI:

doi.org/10.1016/j.ins.2015.10.016

Notas: WOS core collection ISI