Multi-class second-order cone programming support vector machines
Abstract
This paper presents novel second-order cone programming (SOCP) formulations that determine a linear multi-class predictor using support vector machines (SVMs). We first extend the ideas of OvO (One-versus-One) and OvA (One-versus-All) SVM formulations to SOCP-SVM, providing two interesting alternatives to the standard SVM formulations. Additionally, we propose a novel approach (MC-SOCP) that simultaneously constructs all required hyperplanes for multi-class classification, based on the multi-class SVM formulation (MC-SVM). The use of conic constraints for each pair of training patterns in a single optimization problem provides an adequate framework for a balanced and effective prediction.
Más información
Título de la Revista: | INFORMATION SCIENCES |
Volumen: | 330 |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2016 |
Página de inicio: | 328 |
Página final: | 341 |
Idioma: | Ingles |
URL: | https://www.sciencedirect.com/science/article/pii/S0020025515007422 |
DOI: |
doi.org/10.1016/j.ins.2015.10.016 |
Notas: | WOS core collection ISI |