The two-dimensional Lazer-McKenna conjecture for an exponential nonlinearity

Del Pino M.; Munoz, C

Abstract

We consider the problem of Ambrosetti-Prodi type{(Δ u + eu = s φ{symbol}1 + h (x), in  Ω,; u = 0, on  ∂ Ω,) where Ω is a bounded, smooth domain in R2, φ{symbol}1 is a positive first eigenfunction of the Laplacian under Dirichlet boundary conditions and h ∈ C0, α (over(Ω, -)). We prove that given k ≥ 1 this problem has at least k solutions for all sufficiently large s > 0, which answers affirmatively a conjecture by Lazer and McKenna [A.C. Lazer, P.J. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981) 282-294] for this case. The solutions found exhibit multiple concentration behavior around maxima of φ{symbol}1 as s → + ∞. © 2006 Elsevier Inc. All rights reserved.

Más información

Título según WOS: The two-dimensional Lazer-McKenna conjecture for an exponential nonlinearity
Título según SCOPUS: The two-dimensional Lazer-McKenna conjecture for an exponential nonlinearity
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 231
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2006
Página de inicio: 108
Página final: 134
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022039606002543
DOI:

10.1016/j.jde.2006.07.003

Notas: ISI, SCOPUS