From Becker-Doring to Lifshitz-Slyozov: deriving the non-local boundary condition of a non-linear transport equation
Abstract
We investigate the connection between two classical models of phase transition phenomena, the (discrete size, Markov chain or infinite set of ODE) Becker-Doring equations and the (continuous size, PDE) Lifshitz-Slyozov equation. Contrary to previous studies, we use a weak topology that includes the boundary of the state space, allowing us to rigorously derive a boundary value for the Lifshitz-Slyozov model. This boundary condition depends on a particular scaling and is the result of a separation of time scales.
Más información
Título según WOS: | ID WOS:000373019900016 Not found in local WOS DB |
Título de la Revista: | WORKSHOP ON MULTISCALE AND HYBRID MODELLING IN CELL AND CELL POPULATION BIOLOGY |
Volumen: | 5 |
Editorial: | E D P Sciences |
Fecha de publicación: | 2015 |
DOI: |
10.1051/itmconf/20150500017 |
Notas: | ISI |