From Becker-Doring to Lifshitz-Slyozov: deriving the non-local boundary condition of a non-linear transport equation

Yvinec, Romain; Deschamps, Julien; Hingant, Erwan; Volpert, V; Clairambault, J

Abstract

We investigate the connection between two classical models of phase transition phenomena, the (discrete size, Markov chain or infinite set of ODE) Becker-Doring equations and the (continuous size, PDE) Lifshitz-Slyozov equation. Contrary to previous studies, we use a weak topology that includes the boundary of the state space, allowing us to rigorously derive a boundary value for the Lifshitz-Slyozov model. This boundary condition depends on a particular scaling and is the result of a separation of time scales.

Más información

Título según WOS: ID WOS:000373019900016 Not found in local WOS DB
Título de la Revista: WORKSHOP ON MULTISCALE AND HYBRID MODELLING IN CELL AND CELL POPULATION BIOLOGY
Volumen: 5
Editorial: E D P Sciences
Fecha de publicación: 2015
DOI:

10.1051/itmconf/20150500017

Notas: ISI