Spherical steady-state accretion of a relativistic collisionless gas into a Schwarzschild black hole

Rioseco, Paola; Sarbach, Olivier; IOP

Abstract

In previous work, we derived the most general solution of the collisionless Boltzmann equation describing the accretion of a kinetic gas into a Schwarzschild black hole background, and we gave explicit expressions for the corresponding observables (the current density and stress energy-momentum tensor) in terms of certain integrals over the distribution function. In this article, we numerically compute these integrals for the particular case of the steady-state, spherical symmetric accretion flows which, at infinity, are described by an equilibrium distribution function of given temperature. We analyze in detail the behavior of the observables as a function of the temperature and the radial coordinate, comparing our results with the perfect fluid model of Bondi-Michel accretion.

Más información

Título según WOS: ID WOS:000403069200010 Not found in local WOS DB
Título de la Revista: XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23)
Volumen: 831
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2017
DOI:

10.1088/1742-6596/831/1/012009

Notas: ISI