Variational reduction for Ginzburg-Landau vortices

Del Pino M.; Kowalczyk M.; Musso, M

Abstract

Let Ω be a bounded domain with smooth boundary in R2. We construct non-constant solutions to the complex-valued Ginzburg-Landau equation ε2 Δ u + (1 - | u |2) u = 0 in Ω, as ε → 0, both under zero Neumann and Dirichlet boundary conditions. We reduce the problem of finding solutions having isolated zeros (vortices) with degrees ±1 to that of finding critical points of a small C1-perturbation of the associated renormalized energy. This reduction yields general existence results for vortex solutions. In particular, for the Neumann problem, we find that if Ω is not simply connected, then for any k ≥ 1 a solution with exactly k vortices of degree one exists. © 2006 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Variational reduction for Ginzburg-Landau vortices
Título según SCOPUS: Variational reduction for Ginzburg-Landau vortices
Título de la Revista: JOURNAL OF FUNCTIONAL ANALYSIS
Volumen: 239
Número: 2
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2006
Página de inicio: 497
Página final: 541
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022123606003089
DOI:

10.1016/j.jfa.2006.07.006

Notas: ISI, SCOPUS