On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels
Abstract
We prove the convergence of an explicit monotone finite difference scheme approximating an initial-boundary value problem for a spatially one-dimensional quasilinear strongly degenerate parabolic equation, which is supplied with two zero-flux boundary conditions. This problem arises in a model of sedimentation-consolidation processes in centrifuges and vessels with varying cross-sectional area. We formulate the definition of entropy solution of the model in the sense of Kružkov and prove the convergence of the scheme to the unique BV entropy solution of the problem. The scheme and the model are illustrated by numerical examples. © 2006 IMACS.
Más información
Título según WOS: | On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels |
Título según SCOPUS: | On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels |
Título de la Revista: | APPLIED NUMERICAL MATHEMATICS |
Volumen: | 56 |
Número: | 10-nov |
Editorial: | Elsevier |
Fecha de publicación: | 2006 |
Página de inicio: | 1397 |
Página final: | 1417 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0168927406000729 |
DOI: |
10.1016/j.apnum.2006.03.021 |
Notas: | ISI, SCOPUS - WOS |