On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels

Burger, R; Coronel, A; Sepúlveda M.

Abstract

We prove the convergence of an explicit monotone finite difference scheme approximating an initial-boundary value problem for a spatially one-dimensional quasilinear strongly degenerate parabolic equation, which is supplied with two zero-flux boundary conditions. This problem arises in a model of sedimentation-consolidation processes in centrifuges and vessels with varying cross-sectional area. We formulate the definition of entropy solution of the model in the sense of Kružkov and prove the convergence of the scheme to the unique BV entropy solution of the problem. The scheme and the model are illustrated by numerical examples. © 2006 IMACS.

Más información

Título según WOS: On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels
Título según SCOPUS: On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels
Título de la Revista: APPLIED NUMERICAL MATHEMATICS
Volumen: 56
Número: 10-nov
Editorial: Elsevier
Fecha de publicación: 2006
Página de inicio: 1397
Página final: 1417
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0168927406000729
DOI:

10.1016/j.apnum.2006.03.021

Notas: ISI, SCOPUS - WOS