A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations
Abstract
We present a priori and a posteriori error analyses of a virtual element method (VEM) to approximate the vibration frequencies and modes of an elastic solid. We analyse a variational formulation relying only on the solid displacement and propose an H-1 (Omega)-conforming discretization by means of the VEM. Under standard assumptions on the computational domain, we show that the resulting scheme provides a correct approximation of the spectrum and prove an optimal-order error estimate for the eigenfunctions and a double order for the eigenvalues. Since the VEM has the advantage of using general polygonal meshes, which allows efficient implementation of mesh refinement strategies, we also introduce a residual-type a posteriori error estimator and prove its reliability and efficiency. We use the corresponding error estimator to drive an adaptive scheme. Finally, we report the results of a couple of numerical tests that allow us to assess the performance of this approach.
Más información
| Título según WOS: | A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations | 
| Título de la Revista: | IMA JOURNAL OF NUMERICAL ANALYSIS | 
| Volumen: | 40 | 
| Número: | 1 | 
| Editorial: | OXFORD UNIV PRESS | 
| Fecha de publicación: | 2020 | 
| Página de inicio: | 322 | 
| Página final: | 357 | 
| DOI: | 
 10.1093/IMANUM/DRY063  | 
| Notas: | ISI |