Realization of a Choquet simplex as the set of invariant probability measures of a tiling system
Abstract
In this paper we show that, for every Choquet simplex K and for every d > 1, there exists a ℤd-Toeplitz system whose set of invariant probability measures is affine homeomorphic to K. Then, we conclude that K may be realized as the set of invariant probability measures of a tiling system (ΩT, â„d). © 2006 Cambridge University Press.
Más información
| Título según WOS: | Realization of a Choquet simplex as the set of invariant probability measures of a tiling system |
| Título según SCOPUS: | Realization of a Choquet simplex as the set of invariant probability measures of a tiling system |
| Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
| Volumen: | 26 |
| Número: | 5 |
| Editorial: | CAMBRIDGE UNIV PRESS |
| Fecha de publicación: | 2006 |
| Página de inicio: | 1417 |
| Página final: | 1441 |
| Idioma: | English |
| URL: | http://www.journals.cambridge.org/abstract_S0143385706000319 |
| DOI: |
10.1017/S0143385706000319 |
| Notas: | ISI, SCOPUS |