Nonlinear eigenvalues for a quasilinear elliptic system in Orlicz-Sobolev spaces
Abstract
Using an Orlicz-Sobolev Space setting, we consider an eigenvalue problem for a system of the form {Δ φ1u = λ(a1(x,u)+b(x) γ1(u)Γ2(v)) in Ω, -Δφ2 v = λ(a2(x, v) + b(x)Γ1(u)γ2(u)) in Ω, u = v =0 on ∂Ω. We prove that the solution to a suitable minimizing problem, with a restriction, yields a solution to this problem for a certain λ. The differential operators involved lack homogeneity and in addition the Orlicz-Sobolev spaces needed may not be reflexive and the corresponding functional in the minimization problem is in general neither everywhere defined nor a fortiori C 1. © Springer Science+Business Media, LLC 2006.
Más información
| Título según WOS: | Nonlinear eigenvalues for a quasilinear elliptic system in Orlicz-Sobolev spaces |
| Título según SCOPUS: | Nonlinear eigenvalues for a quasilinear elliptic system in orlicz-sobolev spaces |
| Título de la Revista: | JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS |
| Volumen: | 18 |
| Número: | 4 |
| Editorial: | Springer |
| Fecha de publicación: | 2006 |
| Página de inicio: | 901 |
| Página final: | 929 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s10884-006-9049-7 |
| DOI: |
10.1007/s10884-006-9049-7 |
| Notas: | ISI, SCOPUS |