STABILITY OF THE STOKES PROJECTION ON WEIGHTED SPACES AND APPLICATIONS
Abstract
We show that on convex polytopes in two or three dimensions, the finite element Stokes projection is stable on weighted spaces W-0(1,p) (omega, Omega) x L-p(omega, Omega), where the weight belongs to a certain Muckenhoupt class and the integrability index can be different from two. We show how this estimate can be applied to obtain error estimates for approximations of the solution to the Stokes problem with singular sources.
Más información
Título según WOS: | STABILITY OF THE STOKES PROJECTION ON WEIGHTED SPACES AND APPLICATIONS |
Título de la Revista: | MATHEMATICS OF COMPUTATION |
Volumen: | 89 |
Número: | 324 |
Editorial: | AMER MATHEMATICAL SOC |
Fecha de publicación: | 2020 |
Página de inicio: | 1581 |
Página final: | 1603 |
DOI: |
10.1090/MCOM/3509 |
Notas: | ISI |