STABILITY OF THE STOKES PROJECTION ON WEIGHTED SPACES AND APPLICATIONS

Duran, Ricardo G.; Otarola, Enrique; Salgado, Abner J.

Abstract

We show that on convex polytopes in two or three dimensions, the finite element Stokes projection is stable on weighted spaces W-0(1,p) (omega, Omega) x L-p(omega, Omega), where the weight belongs to a certain Muckenhoupt class and the integrability index can be different from two. We show how this estimate can be applied to obtain error estimates for approximations of the solution to the Stokes problem with singular sources.

Más información

Título según WOS: STABILITY OF THE STOKES PROJECTION ON WEIGHTED SPACES AND APPLICATIONS
Título de la Revista: MATHEMATICS OF COMPUTATION
Volumen: 89
Número: 324
Editorial: AMER MATHEMATICAL SOC
Fecha de publicación: 2020
Página de inicio: 1581
Página final: 1603
DOI:

10.1090/MCOM/3509

Notas: ISI