Asymptotic randomization of subgroup shifts by linear cellular automata
Abstract
Let double-struck M sign = ℕD be the positive orthant of a D-dimensional lattice and let (g, +) be a finite abelian group. Let ω ⊆ gdouble-struck M sign be a subgroup shift, and let μ be a Markov random field whose support is &. Let Φ: ω → ω be a linear cellular automaton. Under broad conditions on g, we show that the Cesaro average N-1 ∑n=0 N-1 Φn (μ) converges to a measure of maximal entropy for the shift action on ω. © 2005 Cambridge University Press.
Más información
Título según WOS: | Asymptotic randomization of subgroup shifts by linear cellular automata |
Título según SCOPUS: | Asymptotic randomization of subgroup shifts by linear cellular automata |
Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
Volumen: | 26 |
Número: | 4 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2006 |
Página de inicio: | 1203 |
Página final: | 1224 |
Idioma: | English |
DOI: |
10.1017/S01433857060000216 |
Notas: | ISI, SCOPUS |