Extending Collective Intelligence Evolutionary Algorithms: A Facility Location Problem Application

Cinalli, D.; Marti, L.; Sanchez-Pi, N; Garcia, A. C. B.

Keywords: preferences, collective intelligence, facility location, reference points, evolutionary multi-objective optimization algorithms

Abstract

This work extends current collective intelligence evolutionary algorithms by incorporating a collective-based variation operator. As part of this work, the proposals are compared with state-of-the-art reference-point-based MOEAs: NSGA-II and RNSGA-II. Another primary objective of the work is to deal with a real-world multi-objective instance of the facility location problem. The experimental results validate the proposal. The new collective intelligence MOEA outperformed NSGA-II and R-NSGA-II for complex scenarios.

Más información

Editorial: IEEE
Fecha de publicación: 2020
Año de Inicio/Término: 2020
Página de inicio: 1
Página final: 8
Idioma: Inglés
URL: https://ieeexplore.ieee.org/document/9185523
DOI:

https://doi.org/10.1109/CEC48606.2020.9185523