Better 3-coloring algorithms: Excluding a triangle and a seven vertex path
Abstract
We present an algorithm to color a graph G with no triangle and no induced 7-vertex path (i.e., a {P-7, C-3}-free graph), where every vertex is assigned a list of possible colors which is a subset of {1, 2, 3}. While this is a special case of the problem solved in Bonomo et al. (2018) [1], that does not require the absence of triangles, the algorithm here is both faster and conceptually simpler. The complexity of the algorithm is O(vertical bar V (G)vertical bar(5)(vertical bar V (G)vertical bar + vertical bar E(G)vertical bar)), and if G is bipartite, it improves to O(vertical bar V (G)vertical bar(2)(vertical bar V (G)vertical bar + vertical bar E(G)vertical bar)).
Más información
| Título según WOS: | Better 3-coloring algorithms: Excluding a triangle and a seven vertex path |
| Título de la Revista: | THEORETICAL COMPUTER SCIENCE |
| Volumen: | 850 |
| Editorial: | Elsevier |
| Fecha de publicación: | 2021 |
| Página de inicio: | 98 |
| Página final: | 115 |
| DOI: |
10.1016/J.TCS.2020.10.032 |
| Notas: | ISI |