Anti-hypernociceptive and anti-inflammatory effects of JM-20: A novel hybrid neuroprotective compound
Abstract
The present study examines the possible effect of the novel hybrid molecule JM-20 (3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-411-dihydro-1H-pyrido[2,3-b] [1,5] benzodiazepine) on pain-related behaviours in a persistent pain model (5% formalin test) and in the neutrophil migration events during the inflammatory process. It further introduces JM-20 in a chronic constriction injury (CCI) model to clarify the possible subjacent mechanisms with its consequent clinical relevance. A single administration of JM-20 (20 or 40 mg/kg, per os [p.o.]) decreased licking/biting exclusively in the tonic phase of the formalin test in a GABA/benzodiazepine (BZD) receptor antagonist flumazenil-sensitive manner. JM-20 reduced in vivo neutrophil migration, rolling and adhesion to the endothelium induced by intraperitoneal administration of carrageenan in mice. In addition, plasma extravasation and tumour necrosis factor alpha production in the peritoneal fluid were decreased. Treatment with JM-20 (20 mg/kg, p.o.) for 7 days after CCI reduced mechanical hypersensitivity in a NG-monomethyl-L-arginine (L-NMMA)/methylene blue/glibenclamide-sensitive manner. Histopathological signs of Wallerian degeneration (WD) of the sciatic nerve were also attenuated, as well as interleukin-1 beta release in the spinal cord. The nitrate/nitrite concentration was increased centrally and did not show differences at the peripheral nerve level. The findings of this study suggest JM-20 can decrease persistent pain. A transient activity of its BDZ portion on nociceptive pathways mediated by GABA/BDZ receptors in association with its antiinflammatory properties could be at least partially involved in this effect. JM-20 decreased CCI-induced mechanical hypersensitivity via the L-arginine/nitric oxide (NO)/cyclic GMP-sensitive ATP-sensitive potassium channel pathway. Its neuroprotective ability by preventing WD could be implicated in its anti-neuropathic mechanisms.
Más información
Título según WOS: | Anti-hypernociceptive and anti-inflammatory effects of JM-20: A novel hybrid neuroprotective compound |
Título de la Revista: | BRAIN RESEARCH BULLETIN |
Volumen: | 165 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2020 |
Página de inicio: | 185 |
Página final: | 197 |
DOI: |
10.1016/j.brainresbull.2020.10.003 |
Notas: | ISI |