On the extension complexity of scheduling polytopes

Tiwary, Hans Raj; Verdugo, Victor; Wiese, Andreas

Abstract

We study the minimum makespan problem on identical machines in which we want to assign a set of n given jobs to m machines in order to minimize the maximum load over the machines. We prove upper and lower bounds for the extension complexity of its linear programming formulations. In particular, we prove that the canonical formulation for the problem has extension complexity 2(Omega(n/logn)), even if each job has size 1 or 2 and the optimal makespan is 2. (C) 2020 Elsevier B.V. All rights reserved.

Más información

Título según WOS: On the extension complexity of scheduling polytopes
Título de la Revista: OPERATIONS RESEARCH LETTERS
Volumen: 48
Número: 4
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2020
Página de inicio: 472
Página final: 479
DOI:

10.1016/J.ORL.2020.05.008

Notas: ISI