On local linearization method for stochastic differential equations driven by fractional Brownian motion

Araya, Hector; Leon, Jorge A.; Torres, Soledad

Abstract

We propose a local linearization scheme to approximate the solutions of non-autonomous stochastic differential equations driven by fractional Brownian motion with Hurst parameterToward this end, we approximate the drift and diffusion terms by means of a first-order Taylor expansion. This becomes the original equation into a local fractional linear stochastic differential equation, whose solution can be figured out explicitly. As in the Brownian motion case (i.e.,H = 1/2), the rate of convergence, in our case, is twice the one of the Euler scheme. Numerical examples are given to demonstrate the performance of the method.

Más información

Título según WOS: On local linearization method for stochastic differential equations driven by fractional Brownian motion
Título de la Revista: STOCHASTIC ANALYSIS AND APPLICATIONS
Volumen: 39
Número: 1
Editorial: TAYLOR & FRANCIS INC
Fecha de publicación: 2021
Página de inicio: 55
Página final: 90
DOI:

10.1080/07362994.2020.1779746

Notas: ISI