On a Kinetic Fitzhugh-Nagumo Model of Neuronal Network

Mischler, S.; Quininao, C.; Touboul, J.

Abstract

We investigate existence and uniqueness of solutions of a McKean-Vlasov evolution PDE representing the macroscopic behaviour of interacting Fitzhugh-Nagumo neurons. This equation is hypoelliptic, nonlocal and has unbounded coefficients. We prove existence of a solution to the evolution equation and non trivial stationary solutions. Moreover, we demonstrate uniqueness of the stationary solution in the weakly nonlinear regime. Eventually, using a semigroup factorisation method, we show exponential nonlinear stability in the small connectivity regime.

Más información

Título según WOS: ID WOS:000371387000008 Not found in local WOS DB
Título de la Revista: COMMUNICATIONS IN MATHEMATICAL PHYSICS
Volumen: 342
Número: 3
Editorial: Springer
Fecha de publicación: 2016
Página de inicio: 1001
Página final: 1042
DOI:

10.1007/s00220-015-2556-9

Notas: ISI