Singular perturbations of integro-differential equations
Abstract
We study the singular perturbation problem{A formula is presented}for the integro-differential equation{A formula is presented}in a Banach space, when ε{lunate} → 0+. We assume that A is the generator of a strongly continuous cosine family. Then under some regularity conditions on the scalar-valued kernel K we show that problem (Eε{lunate}) has a unique solution uε{lunate}(t) for each small ε{lunate} > 0. Moreover uε{lunate}(t) converges to u(t) as ε{lunate} → 0+, the unique solution of equation (E). © 2005 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Singular perturbations of integro-differential equations |
| Título según SCOPUS: | Singular perturbations of integro-differential equations |
| Título de la Revista: | APPLIED MATHEMATICS AND COMPUTATION |
| Volumen: | 175 |
| Número: | 2 |
| Editorial: | Elsevier Science Inc. |
| Fecha de publicación: | 2006 |
| Página de inicio: | 1582 |
| Página final: | 1595 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0096300305007162 |
| DOI: |
10.1016/j.amc.2005.09.005 |
| Notas: | ISI, SCOPUS |