A note on Jacobians of quasiplatonic Riemann surfaces with complex multiplication

Reyes-Carocca, Sebastian

Abstract

Let m >= 6 be an even integer. In this short note we prove that the Jacobian variety of a quasiplatonic Riemann surface with associated group of automorphisms isomorphic to C-2(2) x 2 C-m admits complex multiplication. We then extend this result to provide a criterion under which the Jacobian variety of a quasiplatonicRiemann surface admits complexmultiplication.

Más información

Título según WOS: A note on Jacobians of quasiplatonic Riemann surfaces with complex multiplication
Título de la Revista: GEOMETRIAE DEDICATA
Editorial: Springer
Fecha de publicación: 2020
DOI:

10.1007/s10711-020-00577-9

Notas: ISI