On the stability of linear systems with an exact constraint set
Abstract
This paper deals with the stability of the intersection of a given set X ⊂ â„n with the solution, F ⊂ â„n, of a given linear system whose coefficients can be arbitrarily perturbed. In the optimization context, the fixed constraint set X can be the solution set of the (possibly nonlinear) system formed by all the exact constraints (e.g., the sign constraints), a discrete subset of â„n (as ℤn or {0,1} n , as it happens in integer or Boolean programming) as well as the intersection of both kind of sets. Conditions are given for the intersection F ∩ X to remain nonempty (or empty) under sufficiently small perturbations of the data. © Springer-Verlag 2006.
Más información
Título según WOS: | On the stability of linear systems with an exact constraint set |
Título según SCOPUS: | On the stability of linear systems with an exact constraint set |
Título de la Revista: | MATHEMATICAL METHODS OF OPERATIONS RESEARCH |
Volumen: | 63 |
Número: | 1 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2006 |
Página de inicio: | 107 |
Página final: | 121 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00186-005-0030-8 |
DOI: |
10.1007/s00186-005-0030-8 |
Notas: | ISI, SCOPUS |