On the stability of linear systems with an exact constraint set

Amaya J.; Goberna MA

Abstract

This paper deals with the stability of the intersection of a given set X ⊂ ℝn with the solution, F ⊂ ℝn, of a given linear system whose coefficients can be arbitrarily perturbed. In the optimization context, the fixed constraint set X can be the solution set of the (possibly nonlinear) system formed by all the exact constraints (e.g., the sign constraints), a discrete subset of ℝn (as ℤn or {0,1} n , as it happens in integer or Boolean programming) as well as the intersection of both kind of sets. Conditions are given for the intersection F ∩ X to remain nonempty (or empty) under sufficiently small perturbations of the data. © Springer-Verlag 2006.

Más información

Título según WOS: On the stability of linear systems with an exact constraint set
Título según SCOPUS: On the stability of linear systems with an exact constraint set
Título de la Revista: MATHEMATICAL METHODS OF OPERATIONS RESEARCH
Volumen: 63
Número: 1
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2006
Página de inicio: 107
Página final: 121
Idioma: English
URL: http://link.springer.com/10.1007/s00186-005-0030-8
DOI:

10.1007/s00186-005-0030-8

Notas: ISI, SCOPUS