On the stability of linear systems with an exact constraint set
Abstract
This paper deals with the stability of the intersection of a given set X ⊂ â„n with the solution, F ⊂ â„n, of a given linear system whose coefficients can be arbitrarily perturbed. In the optimization context, the fixed constraint set X can be the solution set of the (possibly nonlinear) system formed by all the exact constraints (e.g., the sign constraints), a discrete subset of â„n (as ℤn or {0,1} n , as it happens in integer or Boolean programming) as well as the intersection of both kind of sets. Conditions are given for the intersection F ∩ X to remain nonempty (or empty) under sufficiently small perturbations of the data. © Springer-Verlag 2006.
Más información
| Título según WOS: | On the stability of linear systems with an exact constraint set |
| Título según SCOPUS: | On the stability of linear systems with an exact constraint set |
| Título de la Revista: | MATHEMATICAL METHODS OF OPERATIONS RESEARCH |
| Volumen: | 63 |
| Número: | 1 |
| Editorial: | SPRINGER HEIDELBERG |
| Fecha de publicación: | 2006 |
| Página de inicio: | 107 |
| Página final: | 121 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s00186-005-0030-8 |
| DOI: |
10.1007/s00186-005-0030-8 |
| Notas: | ISI, SCOPUS |