Multivariable predictive control of a pressurized tank using neural networks

Duarte-Mermoud, MA; Suarez, AM; Bassi, DF

Abstract

The behavior of a multivariable predictive control scheme based on neural networks applied to a model of a nonlinear multivariable real process, consisting of a pressurized tank is investigated in this paper. The neural scheme consists of three neural networks; the first is meant for the identification of plant parameters (identifier), the second one is for the prediction of future control errors (predictor) and the third one, based on the two previous, compute the control input to be applied to the plant (controller). The weights of the neural networks are updated on-line, using standard and dynamic backpropagation. The model of the nonlinear process is driven to an operation point and it is then controlled with the proposed neural control scheme, analyzing the maximum range over the neural control works properly.

Más información

Título según WOS: Multivariable predictive control of a pressurized tank using neural networks
Título según SCOPUS: Multivariable predictive control of a pressurized tank using neural networks
Título de la Revista: NEURAL COMPUTING & APPLICATIONS
Volumen: 15
Número: 1
Editorial: SPRINGER LONDON LTD
Fecha de publicación: 2006
Página de inicio: 18
Página final: 25
Idioma: English
URL: http://link.springer.com/10.1007/s00521-005-0003-0
DOI:

10.1007/s00521-005-0003-0

Notas: ISI, SCOPUS