Collapsing steady states of the Keller-Segel system
Abstract
We consider the boundary value problem: which is equivalent to the stationary Keller-Segel system from chemotaxis. Here is a smooth and bounded domain. We show that given any two non-negative integers k, l with k + l ≥ 1, for ε sufficiently small, there exists a solution uε for which develops asymptotically k interior Dirac deltas with weight 8π and l boundary deltas with weight 4π. Location of blow-up points is characterized explicitly in terms of Green's function of the Neumann problem. © 2006 IOP Publishing Ltd and London Mathematical Society.
Más información
Título según WOS: | Collapsing steady states of the Keller-Segel system |
Título según SCOPUS: | Collapsing steady states of the Keller-Segel system |
Título de la Revista: | NONLINEARITY |
Volumen: | 19 |
Número: | 3 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2006 |
Página de inicio: | 661 |
Página final: | 684 |
Idioma: | English |
URL: | http://stacks.iop.org/0951-7715/19/i=3/a=007?key=crossref.29eb9d3f4e324868459b3621d9a0ec5b |
DOI: |
10.1088/0951-7715/19/3/007 |
Notas: | ISI, SCOPUS |