Collapsing steady states of the Keller-Segel system
Abstract
We consider the boundary value problem: which is equivalent to the stationary Keller-Segel system from chemotaxis. Here is a smooth and bounded domain. We show that given any two non-negative integers k, l with k + l ≥ 1, for ε sufficiently small, there exists a solution uε for which develops asymptotically k interior Dirac deltas with weight 8π and l boundary deltas with weight 4π. Location of blow-up points is characterized explicitly in terms of Green's function of the Neumann problem. © 2006 IOP Publishing Ltd and London Mathematical Society.
Más información
| Título según WOS: | Collapsing steady states of the Keller-Segel system |
| Título según SCOPUS: | Collapsing steady states of the Keller-Segel system |
| Título de la Revista: | NONLINEARITY |
| Volumen: | 19 |
| Número: | 3 |
| Editorial: | IOP PUBLISHING LTD |
| Fecha de publicación: | 2006 |
| Página de inicio: | 661 |
| Página final: | 684 |
| Idioma: | English |
| URL: | http://stacks.iop.org/0951-7715/19/i=3/a=007?key=crossref.29eb9d3f4e324868459b3621d9a0ec5b |
| DOI: |
10.1088/0951-7715/19/3/007 |
| Notas: | ISI, SCOPUS |