Search, Abstractions and Learning in Real-Time Strategy Games A Dissertation Summary
Abstract
Real-Time Strategy Games' large state and action spaces pose a significant hurdle to traditional AI techniques. We propose decomposing the game into sub-problems and integrating the partial solutions into action scripts that can be used as abstract actions by a search or machine learning algorithm. The resulting high level algorithm produces sound strategic choices, and can then be combined with a low-level search algorithm to refine tactical choices. We show strong results in SparCraft, Starcraft: Brood War and mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}RTS against state-of-the-art agents. We expect advances in RTS AI can be used in commercial videogames for playtesting and game balancing, while also having possible real-world applications.
Más información
Título según WOS: | Search, Abstractions and Learning in Real-Time Strategy Games A Dissertation Summary |
Título de la Revista: | KUNSTLICHE INTELLIGENZ |
Volumen: | 34 |
Número: | 1 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2020 |
Página de inicio: | 101 |
Página final: | 103 |
DOI: |
10.1007/S13218-019-00614-0 |
Notas: | ISI |