Retrieving soot volume fraction fields for laminar axisymmetric diffusion flames using convolutional neural networks
Abstract
Typical procedures for estimating soot volume fraction distribution in laboratory flames require solving ill-posed inverse problems to recover the fields from convoluted signals that integrate light extinction from soot particles along the line-of-sight of a photo-detector. Classical deconvolution methods are highly sensitive to noise and the choice of tunable regularization parameters, which prevents obtaining consistent estimations even for the same reference flame settings.
Más información
| Título según WOS: | Retrieving soot volume fraction fields for laminar axisymmetric diffusion flames using convolutional neural networks |
| Título de la Revista: | FUEL |
| Volumen: | 285 |
| Editorial: | ELSEVIER SCI LTD |
| Fecha de publicación: | 2021 |
| DOI: |
10.1016/J.FUEL.2020.119011 |
| Notas: | ISI |