Retrieving soot volume fraction fields for laminar axisymmetric diffusion flames using convolutional neural networks

Abstract

Typical procedures for estimating soot volume fraction distribution in laboratory flames require solving ill-posed inverse problems to recover the fields from convoluted signals that integrate light extinction from soot particles along the line-of-sight of a photo-detector. Classical deconvolution methods are highly sensitive to noise and the choice of tunable regularization parameters, which prevents obtaining consistent estimations even for the same reference flame settings.

Más información

Título según WOS: Retrieving soot volume fraction fields for laminar axisymmetric diffusion flames using convolutional neural networks
Título de la Revista: FUEL
Volumen: 285
Editorial: ELSEVIER SCI LTD
Fecha de publicación: 2021
DOI:

10.1016/J.FUEL.2020.119011

Notas: ISI