A decomposition of the Jacobian of a Humbert-Edge curve
Keywords: Abelian varieties, Humbert-Edge curves
Abstract
A Humbert-Edge curve of type n ≥ 2 is a non-degenerate smooth complete intersection of n − 1 diagonal quadrics in P^n. Such a curve has an interesting geometry since it has a natural action of the group (Z/2Z)^n. We present here a decomposition of its Jacobian variety as a product of Prym- Tyurin varieties, and we compute the kernel of the corresponding isogeny.
Más información
| Editorial: | American Mathematical Society |
| Fecha de publicación: | 2021 |
| Página de inicio: | 31 |
| Página final: | 38 |
| Idioma: | Inglés |
| URL: | https://bookstore.ams.org/conm-766?fbclid=IwAR3-5ny2uk7nEayRZ-bUhhYJwi6x2JS64vS4YZzOyiW6gMjF840oIYcTF94 |
| DOI: |
https://doi.org/10.1090/conm/766/15371 |