Conditional maximum entropy and superstatistics
Abstract
Superstatistics describes nonequilibrium steady states as superpositions of canonical ensembles with a probability distribution of temperatures. Rather than assume a certain distribution of temperature, recently [2020J. Phys. A: Math. Theor.53045004] we have discussed general conditions under which a system in contact with a finite environment can be described by superstatistics together with a physically interpretable, microscopic definition of temperature. In this work, we present a new interpretation of this result in terms of the standard maximum entropy principle using conditional expectation constraints, and provide an example model where this framework can be tested.
Más información
| Título según WOS: | Conditional maximum entropy and superstatistics |
| Título de la Revista: | JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL |
| Volumen: | 53 |
| Número: | 44 |
| Editorial: | IOP PUBLISHING LTD |
| Fecha de publicación: | 2020 |
| DOI: |
10.1088/1751-8121/ABB6AF |
| Notas: | ISI |