Denoising and Voltage Estimation in Modular Multilevel Converters Using Deep Neural-Networks

Langarica, Saul; Pizarro, German; Poblete, Pablo M.; Radrigan, Felipe; Pereda, Javier; Rodriguez, Jose; Nunez, Felipe

Abstract

Modular Multilevel Converters (MMCs) have become one of the most popular power converters for medium/high power applications, from transmission systems to motor drives. However, to operate properly, MMCs require a considerable number of sensors and communication of sensitive data to a central controller, all under relevant electromagnetic interference produced by the high frequency switching of power semiconductors. This work explores the use of neural networks (NNs) to support the operation of MMCs by: i) denoising measurements, such as stack currents, using a blind autoencoder NN; and ii) estimating the sub-module capacitor voltages, using an encoder-decoder NN. Experimental results obtained with data from a three-phase MMC show that NNs can effectively clean sensor measurements and estimate internal states of the converter accurately, even during transients, drastically reducing sensing and communication requirements.

Más información

Título según WOS: Denoising and Voltage Estimation in Modular Multilevel Converters Using Deep Neural-Networks
Título de la Revista: IEEE ACCESS
Volumen: 8
Editorial: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Fecha de publicación: 2020
Página de inicio: 207973
Página final: 207981
DOI:

10.1109/ACCESS.2020.3038552

Notas: ISI