Biotransformation of poly(cis-1,4-isoprene) in a multiphase enzymatic reactor for continuous extraction of oligo-isoprenoid molecules
Abstract
Biotechnological processes for the partial degradation or transformation of poly(cis-1,4-isoprene) rubber have been investigated during recent decades with promising results. The use of the enzyme 'latex clearing protein' (Lcp) to transform the polymer into more hydrophilic oligo-isoprenoids results in modifications of the rubber structure and the synthesis of new material. In order to find an alternative process to recover the degradation products, a continuous extraction method using a biphasic system is described. The enzymatic activity of Lcp1(VH2) was studied in the presence of ethyl acetate and pentane as extraction solvents. Oligo(cis-1,4-isoprene) molecular species were isolated from the organic phase and analyzed by Electrospray Ionization Mass Spectrometry. The enzymatic reaction process was evaluated in terms of the biotransformation yield of poly(cis-1,4-isoprene) rubber into the corresponding degradation products. Biotransformation yields of between 42-52 % were achieved depending on the enzymatic reactor design and the extraction solvent. The results also showed that the mass distribution of the oligo(cis-1,4-isoprene) depended on the organic solvent applied. A novel, simple and effective process is demonstrated for biotransformation of poly(cis-1,4-isoprene) rubber with high oligo-isoprenoid molecules recovery yields.
Más información
Título según WOS: | Biotransformation of poly(cis-1,4-isoprene) in a multiphase enzymatic reactor for continuous extraction of oligo-isoprenoid molecules |
Título de la Revista: | NEW BIOTECHNOLOGY |
Volumen: | 58 |
Editorial: | EL sevier |
Fecha de publicación: | 2020 |
Página de inicio: | 10 |
Página final: | 16 |
DOI: |
10.1016/j.nbt.2020.05.001 |
Notas: | ISI |