Critical exponents for uniformly elliptic extremal operators
Abstract
In this article we present the analysis of critical exponents for a large class of extremal operators, in the case of radially symmetric solutions. More precisely, for such an operator M, we consider the nonlinear equation (*) M(D2u) + up = 0, u > 0 in â„N and we prove the existence of a critical exponent p* that determines the range of p > 1 for which we have existence or non-existence of a positive radial solution to (*). In the case of maximal operators, we define two dimension-like numbers N∞ and N0, depending on M and N, that satisfy 0 < N∞ ≤N0. We prove that our critical exponent satisfies max {N∞/N∞-2, p0} ≤ p * ≤ p∞ where p0 = (N0 + 2)/(N0 - 2) and p∞ = (N ∞ + 2)/(N∞ - 2). In the non-trivial case, N∞ < N0 and both inequalities above are strict. Indiana University Mathematics Journal ©.
Más información
| Título según WOS: | Critical exponents for uniformly elliptic extremal operators |
| Título según SCOPUS: | Critical exponents for uniformly elliptic extremal operators |
| Título de la Revista: | INDIANA UNIVERSITY MATHEMATICS JOURNAL |
| Volumen: | 55 |
| Número: | 2 |
| Editorial: | INDIANA UNIV MATH JOURNAL |
| Fecha de publicación: | 2006 |
| Página de inicio: | 593 |
| Página final: | 629 |
| Idioma: | English |
| Notas: | ISI, SCOPUS |