A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes
Abstract
We prove the convergence of a semi-implicit monotone finite difference scheme approximating an initial-boundary value problem for a spatially one-dimensional quasilinear strongly degenerate parabolic equation, which is supplied with two different inhomogeneous flux-type boundary conditions. This problem arises in the modeling of the sedimentation-consolidation process. We formulate the definition of entropy solution of the model in the sense of Kružkov and prove convergence of the scheme to the unique BV entropy solution of the problem, up to satisfaction of one of the boundary conditions. © 2005 American Mathematical Society.
Más información
Título según WOS: | A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes |
Título según SCOPUS: | A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes |
Título de la Revista: | MATHEMATICS OF COMPUTATION |
Volumen: | 74 |
Número: | 253 |
Editorial: | AMER MATHEMATICAL SOC |
Fecha de publicación: | 2006 |
Página de inicio: | 91 |
Página final: | 112 |
Idioma: | eng |
URL: | http://www.ams.org/journal-getitem?pii=S0025-5718-05-01787-4 |
Notas: | ISI, SCOPUS |