EM-based identification of static errors-in-variables systems utilizing Gaussian Mixture models

Cedeno, Angel L.; Orellana, Rafael; Carvajal, Rodrigo; Aguero, Juan C.

Abstract

In this paper we address the problem of identifying a static errors-in-variables system. Our proposal is based on the Expectation-Maximization algorithm, in which we consider that the distribution of the noise-free input is approximated by a finite Gaussian mixture. This approach allows us to estimate the static system parameters, the input and output noise variances, and the Gaussian mixture paraliteters. We show the benefits of our proposal via numerical simulations. Copyright (C) 2020 The Authors.

Más información

Título según WOS: EM-based identification of static errors-in-variables systems utilizing Gaussian Mixture models
Título de la Revista: IFAC PAPERSONLINE
Volumen: 53
Número: 2
Editorial: Elsevier
Fecha de publicación: 2020
Página de inicio: 863
Página final: 868
DOI:

10.1016/J.IFACOL.2020.12.844

Notas: ISI