Pseudo-potentials, nonlocal symmetries and integrability of some shallow water equations
Abstract
Zero curvature formulations, pseudo-potentials, modified versions, "Miura transformations", conservation laws, and nonlocal symmetries of the Korteweg-de Vries, Camassa-Holm and Hunter-Saxton equations are investigated from a unified point of view: these three equations belong to a two-parameter family of equations describing pseudo-spherical surfaces, and therefore their basic integrability properties can be studied by geometrical means. © Birkhäuser Verlag Basel/Switzerland 2007.
Más información
| Título según WOS: | Pseudo-potentials, nonlocal symmetries and integrability of some shallow water equations |
| Título según SCOPUS: | Pseudo-potentials, nonlocal symmetries and integrability of some shallow water equations |
| Título de la Revista: | SELECTA MATHEMATICA-NEW SERIES |
| Volumen: | 12 |
| Número: | 2 |
| Editorial: | SPRINGER INTERNATIONAL PUBLISHING AG |
| Fecha de publicación: | 2006 |
| Página de inicio: | 241 |
| Página final: | 270 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s00029-006-0024-2 |
| DOI: |
10.1007/s00029-006-0024-2 |
| Notas: | ISI, SCOPUS |