Contracting Lorenz attractors through resonant double homoclinic loops
Abstract
A contracting Lorenz attractor of a three-dimensional vector field is an attractor with a unique singularity whose eigenvalues are real and satisfy the eigenvalue conditions λss < λs < 0 < λu and λs + λu < 0. The study of contracting Lorenz attractors started in [A. Rovella, Bol. Soc. Brasil. Mat. (N.S.), 24 (1993), pp. 233-259]. In this paper we show that certain resonant double homoclinic loops in dimension three generate contracting Lorenz attractors in a positive Lebesgue subset of the parameter space. This gives a positive answer to a question posed in [C. Robinson, SIAM J. Math. Anal., 32 (2000), pp. 119-141]. © 2006 Society for Industrial and Applied Mathematics.
Más información
| Título según WOS: | Contracting Lorenz attractors through resonant double homoclinic loops |
| Título según SCOPUS: | Contracting Lorenz attractors through resonant double homoclinic loops |
| Título de la Revista: | SIAM JOURNAL ON MATHEMATICAL ANALYSIS |
| Volumen: | 38 |
| Número: | 1 |
| Editorial: | SIAM PUBLICATIONS |
| Fecha de publicación: | 2006 |
| Página de inicio: | 309 |
| Página final: | 332 |
| Idioma: | English |
| URL: | http://epubs.siam.org/doi/abs/10.1137/S0036141004443907 |
| DOI: |
10.1137/S0036141004443907 |
| Notas: | ISI, SCOPUS |