Efficient closed-form maximum a posteriori estimators for the gamma distribution
Abstract
We proposed a new class of maximum a posteriori estimators for the parameters of the Gamma distribution. These estimators have simple closed-form expressions and can be rewritten as a bias-corrected maximum likelihood estimators presented by Ye and Chen [Closed-form estimators for the gamma distribution derived from likelihood equations. Am Statist. 2017;71(2):177-181]. A simulation study was carried out to compare different estimation procedures. Numerical results revels that our new estimation scheme outperforms the existing closed-form estimators and produces extremely efficient estimates for both parameters, even for small sample sizes.
Más información
| Título según WOS: | ID WOS:000424426000007 Not found in local WOS DB |
| Título de la Revista: | JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION |
| Volumen: | 88 |
| Número: | 6 |
| Editorial: | TAYLOR & FRANCIS LTD |
| Fecha de publicación: | 2018 |
| Página de inicio: | 1134 |
| Página final: | 1146 |
| DOI: |
10.1080/00949655.2017.1422503 |
| Notas: | ISI |